Graphs whose signless Laplacian spectral radius does not exceed the Hoffman limit value

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Randić index and signless Laplacian spectral radius of graphs

Given a connected graph G, the Randić index R(G) is the sum of 1 √ d(u)d(v) over all edges {u, v} of G, where d(u) and d(v) are the degree of vertices u and v respectively. Let q(G) be the largest eigenvalue of the singless Laplacian matrix of G and n = |V (G)|. Hansen and Lucas (2010) made the following conjecture:

متن کامل

On Complementary Distance Signless Laplacian Spectral Radius and Energy of Graphs

Let $D$ be a diameter and $d_G(v_i, v_j)$ be the distance between the vertices $v_i$ and $v_j$ of a connected graph $G$. The complementary distance signless Laplacian matrix of a graph $G$ is $CDL^+(G)=[c_{ij}]$ in which $c_{ij}=1+D-d_G(v_i, v_j)$ if $ineq j$ and $c_{ii}=sum_{j=1}^{n}(1+D-d_G(v_i, v_j))$. The complementary transmission $CT_G(v)$ of a vertex $v$ is defined as $CT_G(v)=sum_{u in ...

متن کامل

On the Signless Laplacian Spectral Radius of Cacti

A cactus is a connected graph in which any two cycles have at most one vertex in common. We determine the unique graphs with maximum signless Laplacian spectral radius in the class of cacti with given number of cycles (cut edges, respectively) as well as in the class of cacti with perfect matchings and given number of cycles.

متن کامل

On graphs whose spectral radius

The structure of graphs whose largest eigenvalue is bounded by 3 2 √ 2 (≈ 2.1312) is investigated. In particular, such a graph can have at most one circuit, and has a natural quipu structure.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2011

ISSN: 0024-3795

DOI: 10.1016/j.laa.2011.05.006